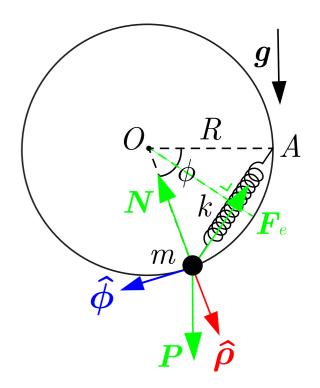
Applications - Chapitre 7

Energie potentielle, énergie mécanique et résonance

A.7.2 Pendule asymétrique

A.7.2 Pendule asymétrique


- Un point matériel de masse m attaché à un ressort de constante élastique k et de longueur à vide négligeable fixé en A se déplace sans frottement sur un cercle vertical de centre O et de rayon R.
- Energies potentielles :
 - Gravitationnelle : (référence : droite OA)

(A.7.1)

2 Elastique : (référence : point A)

(A.7.2)

• Energie potentielle totale :

(A.7.3)

• Formule de trigonométrie :

$$(A.7.3) \quad \Rightarrow \tag{A.7.4}$$

Positions d'équilibre :

$$\left. \frac{dV}{d\phi} \right|_{\phi = \phi_0} = \tag{A.7.5}$$

$$\Rightarrow$$
 $(A.7.6)$

1

2

Stabilité des positions d'équilibre :

$$\left. \frac{d^2V}{d\phi^2} \right|_{\phi=\phi_0} = \left. \frac{d}{d\phi} \left(\frac{dV}{d\phi} \right) \right|_{\phi=\phi_0} =$$

=

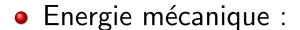
(A.7.7)

$$\phi_1 \in \left(0, \frac{\pi}{2}\right) \qquad \Rightarrow \qquad \Rightarrow \qquad \frac{d^2V}{d\phi^2}\Big|_{\phi = \phi_0 \equiv} \qquad \Rightarrow \quad \text{stable}$$

$$\Rightarrow \frac{d^2V}{d\phi^2}\bigg|_{\phi=\phi_0\equiv}$$

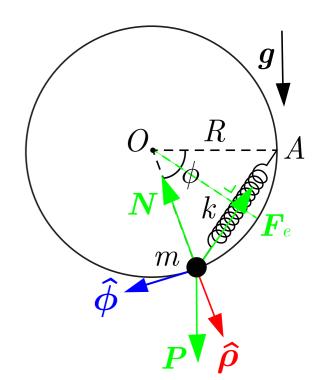
 \Rightarrow instable

• Interprétation physique :


La position d'équilibre ϕ_1 qui est en dessous du point d'attache A est stable, la position d'équilibre $\phi_2 = \phi_1 + \pi$ qui est en-dessus du point A est instable.

• Energie cinétique :

$$T = \frac{1}{2} m \boldsymbol{v}^2 =$$


_

(A.7.8)

$$E = T + V =$$

(A.7.9)

• Conservation de l'énergie mécanique : (E = cste)

(A.7.10)

• Equation du mouvement :

$$(A.7.10) \quad \Rightarrow \tag{A.7.11}$$

ullet Petites oscillations autour de la position d'équilibre stable $\phi=\phi_1$:

$$(A.7.10) \quad \Rightarrow \tag{A.7.12}$$

• Formules de trigonométrie : $(\alpha \ll 1)$

$$\sin\left(\phi_1 + \alpha\right) \simeq \tag{A.7.13}$$

$$\cos\left(\phi_1 + \alpha\right) \simeq \tag{A.7.14}$$

Equation du mouvement : (petites oscillations)

• Identité trigonométrique :

$$\xrightarrow{\cdot 1/\cos^2 \phi_1} \qquad (A.7.17)$$

Equation du mouvement : (petites oscillations)

(A.7.18)

• Pulsation :

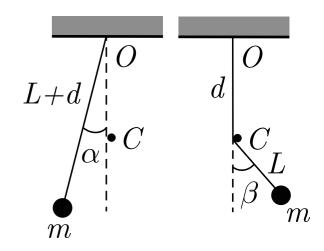
(A.7.19)

 $lacksquare \|F_e\|\gg \|P\| \quad \Rightarrow \quad$

Poids négligeable \Rightarrow oscillateur harmonique

Angle d'équilibre :

 $||P||\gg ||F_e|| \Rightarrow$


Force élastique négligeable \Rightarrow pendule vertical

Angle d'équilibre :

A.7.2 Pendule asymétrique

A.7.2 Pendule asymétrique

• Soit un pendule asymétrique constitué d'une masse m attachée à un fil de longueur L+d et de masse négligeable fixé au point O. Un clou se trouve au point C à une distance d au-dessous de O.

- Gauche :
 - Energie cinétique :

$$T_g = \frac{1}{2} m v^2 =$$

(A.7.20)

• Energie potentielle :

$$V_g =$$

(A.7.21)

Energie mécanique :

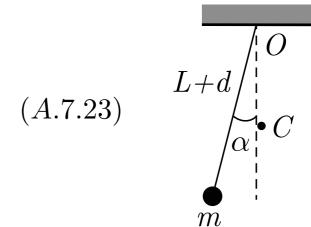
$$E = T_g + V_g =$$

(A.7.22)

A.7.2 Pendule asymétrique

Oroite :

• Energie cinétique :


$$T_d = \frac{1}{2} m v^2 =$$

• Energie potentielle :

$$V_d =$$

• Energie mécanique :

$$E = T_d + V_d =$$

(A.7.24)

(A.7.25)

(A.7.26)

- Equations du mouvement : (E = cste)
 - Gauche :

$$\Rightarrow$$
 $(A.7.27)$

Oroite :

$$\Rightarrow$$
 $(A.7.29)$

A.7.2 Pendule asymétrique

- Petites oscillations autour de l'équilibre $\alpha=\beta=0$:
 - Gauche :

$$(A.7.27) \quad \Rightarrow \tag{A.7.30}$$

Oroite :

$$(A.7.29) \quad \Rightarrow \tag{A.7.32}$$

où
$$(A.7.33)$$

Demi-périodes d'oscillation :

(A.7.34)

La demi-période d'oscillation à gauche π/ω_g est plus longue que la demi-période d'oscillation à droite π/ω_d .